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Outline

Lecture 1. Recursion in Polish spaces

Lecture 2. Effective Borel, analytic and co-analytic pointsets

Lecture 3. Structure theory for pointclasses

• Definitions and basic facts in the first lecture:
– Recursive Polish space — just space from now on
– Pointset: a subset P ⊆ X of a space
– Pointclass: a collection Γ of pointsets, Γ(X ) = {P ⊆ X : P ∈ Γ}
– Σ0

1: the pointclass of semirecursive pointsets
– Locally recursive partial functions f : X ⇀ Y
– The points of Γ: y ∈ Γ ⇐⇒ U(y) = {s : y ∈ Ns(Y)} ∈ Γ(N)
? The Refined Surjection Theorem
? Parametrized pointclasses, the 2nd Recursion Theorem
– The Kleene calculus for local recursion, the 2nd Recursion Theorem

Yiannis N. Moschovakis: EDST Lec 2, Effective Borel, analytic and co-analytic pointsets 1/18



Two basic facts from Lecture 1

• If a pointclass Γ is parametrized, then

(1) Γ is closed under total recursive substitutions, and

(2) every Γ(X ) has a parametrization, a pointset G ∈ Γ(N ×X )
such that for every P ∈ Γ(N ×X ), there is a total recursive

SP : N → N satisfying P(α, x) ⇐⇒ G (SP(α), x)

⇒ 2nd RT: P ∈ Γ(N ×X ) =⇒ (∃ recursive ε̃) P(ε̃, x) ⇐⇒ G (ε̃, x)

• Refined Surjection Theorem For every space X , there is a total
recursive function π : N → X and a Π0

1 set F ⊆ N such that

π is one-to-one on F , π[F ] = X ,

and {(x , s) : π−1(x) ∈ Ns(N ) ∩ F} is Σ0
2

– Used to prove results for N and then transfer them to all X
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Relativized and boldface versions of pointclasses

If Γ is parametrized, then:

• The relativization Γ[x ] of Γ to a point x ∈ X is the pointclass of
all x-sections of pointsets in Γ,

Γ[x ](Y) = {Px ⊆ Y : P ∈ Γ(X × Y)},
where Px(y) ⇐⇒ P(x , y) (α ∈ Σ0

1[β] ⇐⇒ α is recursive in β)

⇒ Each Γ[x ] is parametrized

• The boldface version Γ of Γ is the union of all its relativizations,

Γ =
⋃
X ,x∈X Γ[x ] =

⋃
ε∈N Γ[ε]

• The ambiguous (self-dual) pointclass of Γ is ∆ = Γ ∩ ¬Γ; this is not
in general parametrized, and (by definition)

∆[x ] = Γ[x ] ∩ ¬Γ[x ], ∆ = Γ ∩ ¬Γ
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The analytical and projective pointclasses

• The arithmetical pointclasses are defined by induction on k ≥ 1:

Σ0
1, Π0

k = ¬Σ0
k , Σ0

k+1 = ∃NΠ0
k , ∆0

k = Σ0
k ∩ Π0

k

• The Borel pointclasses of finite order are their boldface versions

Σ0
k , Π0

k , ∆0
k = Σ0

k ∩Π0
k

• The analytical pointclasses are defined by induction on k ≥ 1:

Σ1
1 = ∃NΠ0

2, Π1
k = ¬Σ1

k , Σ1
k+1 = ∃NΠ1

k , ∆1
k = Σ1

k ∩ Π1
k

Σ1
1(X ) : P(x) ⇐⇒ (∃α)(∀t)Q(x , α, t) with Q ∈ Σ0

1(X ×N × N)

Π1
1(X ) : P(x) ⇐⇒ (∀α)(∃t)Q(x , α, t) with Q ∈ Π0

1(X ×N × N)

• The (classical) projective pointclasses are their boldface versions,

Σ1
k , Π1

k , ∆1
k = Σ1

k ∩Π1
k

Π1
1 : P(x) ⇐⇒ (∀α)(∃t)Q(ε, x , α, t) (Q ∈ Π0

1, some ε ∈ N )
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Elementary properties of the analytical pointclasses

⇒ Σ1
k , Π1

k , ∆1
k are closed under recursive substitutions, &,∨, ∃N, ∀N

• α 7→ α∗ = (λt)α(t + 1), (i , α) 7→ (α)i = (λt)α(〈i , t〉) are recursive

⇒ Σ1
k is closed under ∃Y , Π1

k is closed under ∀Y , ∆1
k is closed under ¬

(the proof uses the recursive surjection π : N →→Y)

⇒ y ∈ ∆1
k [x ] ⇐⇒ y ∈ Σ1

k [x ] ⇐⇒ the singleton {y} is in Σ1
k [x ]

Theorem For all k ≥ 1 and x, Π1
k ,Π1

1[x ], Σ1
k and Σ1

1[x ] are parametrized

⇒ P ∈ Π1
k(X ) ⇐⇒ P is a section Gα of G ; α is a Π1

k -code of P

⇒ Π1
k(X ) is uniformly closed under countable unions;

i.e., for some recursive u : N → N ,
⋃

i G(α)i = Gu(α)

Proof. Set P(α, x) ⇐⇒ (∃i)G ((α)i , x) and take u(α) = SP(α)
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The arithmetical and analytical hierarchies

Σ0
1(X ) · · · Σ1

1(X ) Σ1
2(X ) · · ·

( ( ( ( ( (
∆0

1(X ) ∆0
2(X ) ( ∆1

1(X ) ∆1
2(X )

( ( ( ( ( (
Π0

1(X ) · · · Π1
1(X ) Π1

2(X ) · · ·

The Hierarchy Theorem for infinite X
⇒ In fact, for perfect X and every k ≥ 1,

Σ1
k(X ) \∆1

k(X ) 6= ∅
• Classical regularity results: Every Σ1

1 set P ⊆ R is Lebesgue
measurable; it has the property of Baire; and if it is uncountable,
then it has a non-empty perfect subset

•This is most of what can be proved about projective pointsets
and the analytical and projective pointclasses in ZFC
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The limits of ZFC in Descriptive Set Theory

• An almost complete theory was developed in 1905 - 1938 for the
classical pointclasses

Σ1
1 (analytic), Π1

1 (co-analytic) and Σ1
2 (PCA)

and the pointsets in them, and effective versions of these results
were quickly proved in the late 50’s

• But this is as far as you can go in ZFC, for example

- in Gödel’s L there is an uncountable Σ1
2 set of real numbers

which is not Lebesgue measurable, does not have the property of
Baire and has no non-empty perfect subset (Gödel 1938, Addison
1959), and

- there are forcing models of ZFC in which all projective sets of
real numbers have these regularity properties (Solovay 1970,
assuming an inaccessible)

Yiannis N. Moschovakis: EDST Lec 2, Effective Borel, analytic and co-analytic pointsets 7/18



Determinacy and large cardinal hypotheses

• In the period 1966 - (roughly) 1990, all the basic facts about
Σ1

1,Π
1
1 and Σ1

2 were extended to all the projective pointclasses on
the basis of large cardinal hypotheses

• A key step was the introduction in 1967 of determinacy (game
theoretic) hypotheses which were used to establish these results;
in 1988 it was shown by Martin, Steel and Woodin that these
hypotheses follow from the existence of Woodin cardinals

• The use of effective methods is essential in the derivation of
consequences of projective determinacy—a fact which encouraged
the development of EDST

• In the sequel we will formulate and derive some of the basic
results about Σ1

1, Π
1
1, ∆

1
1 and their boldface versions Σ1

1,Π
1
1,∆

1
1 on

the basis of ZF+DC (the Axiom of Depended Choices)

• Whenever it is possible, we will use methods which can be used
to extend these results to many other pointclasses
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? Borel and hyperarithmetical pointsets
• B(X ) is the smallest family of subsets of X which contains all
the open sets and is closed under complements and countable unions

• To get the effective lightface version of B(X ), we code B(X ) in N :

Def Set K1 = {α : α(0) = 0} and for each ξ > 1, by recursion

Kξ = K1 ∪
{

α : α(0) 6= 0 & (∀n)
[
(α∗)n ∈

⋃
η<ξ Kη

]}
(ξ > 1)

Def For each X , fix a parametrization G 1 ⊆ N ×X of Σ0
1(X ) and set

BXα,ξ =

{
G 1

α∗ = {x : G 1(α∗, x)}, if α(0) = 0,⋃
i

(
X \ BX(α∗)i ,η(i)

)
, otherwise,

where η(i) = least η so that (α∗)i ∈ Kη

⇒ α ∈ (Kξ ∩ Kζ) =⇒ BXα,ξ = BXα,ζ = BXα ; set K =
⋃

ξ Kξ

⇒ A ∈ B(X ) ⇐⇒ A = BXα for some α ∈ K

Def A ∈ HYP(X ) ⇐⇒ A = BXα for some recursive α ∈ K
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Coded sets and uniformities

Def A coding of a set A on I ⊆ N is any surjection π : I →→A,
and a coded set is any pair (A, π) of a set and a coding of it

• Π1
1(X ) on N by α 7→ Gα, with G a parametrization of Π1

1(X )

• ∆1
1(X ) on {α ∈ N : G(α)0 = X \G(α)1)} by α 7→ G(α)0 (same G )

• B(X ) on K by α 7→ BXα

⇒ B(X ) is uniformly closed under complementation, i.e., there is a
locally recursive u : N ⇀ N such that

α ∈ K =⇒
(
u(α)↓ & u(α) ∈ K & BXu(α) = X \ BXα

)

Proof. Let v(α) = (λn)α((n)1); then v(α)(〈i , t〉) = α(t) for all t, so

α ∈ K =⇒ (∀i)[(v(α))i = α ∈ K] =⇒ BX(v(α))i
= BXα

and we can set u(α) = 〈1〉ˆv(α) • In this case, the uniformity u is total
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Hyperarithmetical (effectively Borel) pointsets

• Each B(X ) is coded on K by α 7→ BXα

Def A pointset P ⊆ X is hyperarithmetical (effectively Borel) if it
has a recursive Borel code, i.e., P = BXα with a recursive α

• HYP(X ) is coded on {α ∈ K : α is recursive} by α 7→ BXα

⇒ The coded pointclass B is uniformly closed under
&,∨,¬, ∃N, ∀N, continuous substitutions and countable unions

⇒ The coded pointclass HYP is uniformly closed under
&,∨,¬, ∃N, ∀N, recursive substitutions and recursive countable unions

⇒ These facts hold independently of the choice of a
parametrization of Σ0

1(X ) used to define the map α 7→ BXα ,
because different choices produce (suitably defined) equivalent codings
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? The easy half of the Suslin-Kleene Theorem

Theorem For each X , B(X ) ⊆ ∆1
1(X ) uniformly,

i.e., there is a locally recursive u : N ⇀ N such that

(∗) α ∈ K =⇒
(
u(α)↓ & u(α) is a ∆1

1(X )-code of BXα
)

Proof. Define first a locally recursive v : N ×N ⇀ N such that

(∀i)[{ε}N⇀N (α)(i)↓ and is a ∆1
1-code of Ai ⊆ X ]

=⇒
(
v(ε, α)↓ and is a ∆1

1(X )-code of
⋃

i (X \ Ai )
)

Set u(α) = {ε̃}(α), where by the 2nd RT for partial functions

{ε̃}(α) =

{
a ∆1

1(X )-code of G 1
α∗ , if α(0) = 0,

v(ε̃, α∗) otherwise

Proof of (∗) is by induction on the least ξ such that α ∈ Kξ

• Effective transfinite recursion, the most basic tool of EDST
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? The Suslin-Kleene Theorem

Theorem For each X , ∆1
1(X ) ⊆ B(X ) uniformly

i.e., there is a locally recursive u : N ⇀ N such that

if α is a ∆1
1-code of A ⊆ X , then

(
u(α)↓ , u(α) ∈ K & A = BXu(α)

)

⇒ (Suslin 1916) For every X , ∆1
1(X ) = B(X ) Constructive proof!

⇒ (Kleene 1955) ∆1
1(N) = HYP(N) uniformly (with his codings)

• There are several proofs. They all first prove the result for N
using Effective Transfinite Recursion and the Normal Form
Theorem for Π1

1(N ) pointsets (coming up next) and then they
appeal to the Refined Surjection Theorem

⇒ (Classical Corollary, may or may not be interesting) There is a
Gδ set C ⊆ N and a continuous u : C → N such that

if α is a ∆1
1-code of A ⊆ X , then

(
α ∈ C & A = BXu(α)

)

• No proof of this is known which does not use effective methods but . . .
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? The Normal Form Theorems for Π1
1(N ), Σ1

1(N )

Theorem If P ∈ Π1
1(N ), then for some recursive R ⊆ N× N

P(α) ⇐⇒ (∀β)(∃t)R(α(t), β(t))

where α(t) = 〈α(0), . . . , α(t − 1)〉 = 2α(0)+1 · · · pα(t−1)+1
t−1

is the sequence code of (α(0), . . . , α(t − 1))

– because if Q ∈ Σ0
1(N 2), then Q(α, β) ⇐⇒ (∃t)R(α(t), β(t))

Theorem If P ∈ Σ1
1(N ), then for some recursive R ⊆ N× N

α ∈ P ⇐⇒ (∃β)(∀t)R(α(t), β(t))

and so

P = proj[C ] with C = {(α, β) : (∀t)R(α(t), β(t))} in Π0
1

so that, in particular, C is closed

• Similar equivalences (trivially) hold for Π1
1[ε](N n) and Σ1

1[ε](N n)

Yiannis N. Moschovakis: EDST Lec 2, Effective Borel, analytic and co-analytic pointsets 14/18



The Effective Perfect Set Theorem

Theorem (Suslin 1916) Every uncountable Σ1
1 pointset has a

non-empty perfect subset (and so has cardinality 2ℵ0)

• This was previously proved for Borel sets by Hausdorff and
Alexandroff (independently) and was a big deal at the time

It is the strongest result about the Continuum Hypothesis which
can be proved in ZFC

Theorem (Harrison 1967) If A ∈ Σ1
1[x ](Y) and A has a member

y /∈ ∆1
1[x ], then A has a non-empty perfect subset

• Recall that

y ∈ ∆1
1[x ] ⇐⇒ U(y) = {s : x ∈ Ns(Y)} ∈ ∆1

1[x ](N),

and ∆1
1[x ](N) is countable, so {y : y ∈ ∆1

1[x ]} is countable,
and Harrison’s Theorem implies—and “explains”—Suslin’s result
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Plan for proving the

Effective Perfect Set Theorem If A ∈ Σ1
1[x ](Y) and A has a

member y /∈ ∆1
1[x ], then A has a non-empty perfect subset

Lemma 1 If A ∈ Σ1
1[x ](Y), A 6= ∅ and A has no ∆1

1[x ] member,
then A has a non-empty perfect subset

• Proof on the next slide, basically a proof of the classical theorem

Lemma 2 (Upper classification of ∆1
1[x ]) For each point x, the

pointset set {y ∈ Y : y ∈ ∆1
1[x ]} is Π1

1[x ]

• We will derive Lemma 2 from some basic results of the effective
theory in the next lecture

• Proof of the Theorem from the two lemmas. If A ⊆ Y is Σ1
1[x ]

and has at least one member not in ∆1
1[x ], then, by Lemma 2,

A \ {y ∈ Y : y ∈ ∆1
1[x ]} is Σ1

1[x ], not empty and has no ∆1
1[x ]

member; and so it has a non-empty perfect subset by Lemma 1
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Proof of Lemma 1 for N
Lemma If A ∈ Σ1

1[ε](N ), A 6= ∅ and A has no ∆1
1[ε] member, then

A has a non-empty, compact perfect subset

• By the Normal Form Theorem for Σ1
1[ε](N ),

A = proj(C ) with C ⊆ N ×N in Π0
1[ε]

For any pair w = (π1(w), π2(w)) of sequence codes, let

Cw = {(α, β) ∈ C : (∃t)[π1(w) = α(t) & π2(w) = β(t)]} ∈ Π0
1(N 2)

⇒ proj(Cw ) is never a singleton ; because if proj(Cw ) = {α0}, then

α = α0 ⇐⇒ (∃β)[(α, β) ∈ Cw ] and so α0 is ∆1
1[ε]

• For any w = (π1(w), π2(w)), choose w0, w1 such that

proj(Cw ) 6= ∅) =⇒
(
proj(Cw0) 6= ∅, proj(Cw1) 6= ∅,

proj(Cw0)∪proj(Cw1) ⊂ proj(Cw ), proj(Cw0)∩proj(Cw1) = ∅
)
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A = proj(C ) with C ⊆ N ×N in Π0
1[ε]

Cw = {(α, β) ∈ C : (∃t)[π1(w) = α(t), π2(w) = β(t)] ∈ Π0
1(N 2)

proj(Cw ) 6= ∅ =⇒
(
proj(Cw0) 6= ∅, proj(Cw1) 6= ∅

proj(Cw0) ∪ proj(Cw1) ⊂ proj(Cw ), and proj(Cw0) ∩ proj(Cw1) = ∅
)

• For each code w = 〈w0, w1, . . . , wk〉 of a binary sequence, define
Cw so that C〈 〉 = C , Cw∗〈0〉 = Cw0 ,Cw∗〈1〉 = Cw1

C0 C1

C00 C11C10C01

C

• ⋃
γ:N→{0,1}

⋂
t Cγ(t) is the required compact, perfect subset of proj(C )
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